Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations.
نویسندگان
چکیده
Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer's disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent rho degrees (mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the rho degrees cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five "AD" missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from rho degrees cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
منابع مشابه
Association of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inheri...
متن کاملAn enhanced MITOMAP with a global mtDNA mutational phylogeny
The MITOMAP (http://www.mitomap.org) data system for the human mitochondrial genome has been greatly enhanced by the addition of a navigable mutational mitochondrial DNA (mtDNA) phylogenetic tree of approximately 3000 mtDNA coding region sequences plus expanded pathogenic mutation tables and a nuclear-mtDNA pseudogene (NUMT) data base. The phylogeny reconstructs the entire mutational history of...
متن کاملInvestigation of Polymorphisms in Non-Coding Region of Human Mitochondrial DNA in 31 Iranian Hypertrophic Cardiomyopathy (HCM) Patients
The D-loop region is a hot spot for mitochondrial DNA (mtDNA) alterations, containing two hypervariable segments, HVS-I and HVS-II. In order to identify polymorphic sites and potential genetic background accounting for Hypertrophic CardioMyopathy (HCM) disease, the complete non-coding region of mtDNA from 31 unrelated HCM patients and 45 normal controls were sequenced. The sequences were aligne...
متن کاملAssociation of mtDNA mutation with Autism in Iranian patients
The autism spectrum disorders (ASD) are amongst the most heritable complex disorders. Although there have been many efforts to locate the genes associated with ASD risk, many has been remained to be disclosed about the genetics of ASD. Scrutiny's have only disclosed a small number of de novo and inherited variants significantly associated with susceptibility to ASD. These only comprise a small ...
متن کاملMtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints.
Multiple human mutational landscapes of normal and cancer conditions are currently available. However, while the unique mutational patterns of tumors have been extensively studied, little attention has been paid to similarities between malignant and normal conditions. Here we compared the pattern of mutations in the mitochondrial genomes (mtDNAs) of cancer (98 sequences) and natural populations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 26 شماره
صفحات -
تاریخ انتشار 1997